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ABSTRACT 
 

The availability of signals on three or more frequencies from multiple GNSS 

constellations provides opportunities for improving precise point positioning 

(PPP) convergence time and accuracy, compared to when using dual-

frequency observations from a single constellation. Although the multi-

frequency and multi-constellation (MFMC) data may be used with present day 

precise orbit and clock products, there are several biases that must be 

considered to get the best results. When using IGS products, the precise orbit 

and clock corrections are generated using dual-frequency ionosphere-free 

combinations of a ‘base’ pair of signals, and usage of other signals in the PPP 

model results in differential code biases (DCB). Other biases to consider 

include differential phase biases (DPB) for the satellites and receiver and 

satellite antenna offsets for individual frequencies. Integrating multi-

constellation data introduces additional biases, such as inter-system hardware 

and time biases and inter-frequency bias. Although the integration of MFMC 

data introduces such biases, it improves the measurement model strength and 

hence can potentially improve PPP performance through reducing solution 

convergence time and increasing precision and accuracy. 

A brief overview of the MFMC biases and strategies that may be used to treat 

them is discussed. A proposed PPP model that uses triple frequency 

ionosphere-free low-noise linear combination for float ambiguity estimation 

is tested and analysed. MFMC data from four Australian sites is used to 

demonstrate the improvements in PPP solution convergence time, accuracy 

and precision, when comparing single- to multi-constellation GNSS data. 
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1. INTRODUCTION 
 

The PPP technique can determine the position of a GNSS receiver to cm-level accuracy for 

static surveying and sub-decimetre accuracy for kinematic applications, without relying on data 

from a single or network of reference stations. The first advent in PPP was made in Zumberge 

et al. (1997), where it was shown that cm-level repeatability can be achieved with dual-

frequency undifferenced GPS measurements augmented with precise orbit and clock 

corrections. This is often known as the traditional PPP model, where the functional model 

consists of ionosphere-free linear combinations of dual-frequency pseudorange and carrier 

phase measurements. A major limitation of this technique is the time needed to achieve 

convergence of the solution to sub-decimetre accuracy, typically around 30 minutes, which 

restricts many real-time users from using this technique. At present, several commercial 

satellite subscription services provide real-time orbit and clock corrections for PPP such as 

StarFire (Deere), RTX (Trimble), Atlas (Hemisphere), Terrastar (Veripos) and MagicGNSS. 

However, convergence time remains to be a problem especially in areas obstructed by trees, 

buildings or canyons, where the PPP convergence is interrupted several times and for each time, 

the user needs to wait for the convergence to reoccur (Gakstter, 2016). 

 

The availability of data on three or more frequencies from multiple GNSS constellations 

provides an opportunity for improving the PPP performance in terms of reducing the solution 

convergence time and increasing the accuracy and precision. However, such integration of 

MFMC data results in several biases and handling of these biases is a complex problem that 

requires careful modelling. We restrict attention here to the use of IGS precise orbit and clock 

corrections which are generated from ionosphere-free combinations of a ‘base’ pair of signals, 

(e.g. GPS L1/L2, Galileo E1/E5a and Beidou B1/B2) and usage of other signals in the PPP 

model results in differential code biases (DCB) which must be treated. Integration of MFMC 

data also results in other biases such as differential phase biases (DPB) (including the initial 

fractional phase biases) in the satellites and receiver, and satellite antenna offsets for individual 

frequencies (rather than the ionosphere-free combination of the ‘base signal pair’), inter-system 

hardware and time biases (ISB and ISTB) and inter-frequency bias. A detailed analysis of these 

biases and recommendations for their modelling is presented in El-Mowafy et al. (2016). 

 

The availability of triple frequency data may potentially reduce PPP convergence time, 

compared to the dual-frequency case. This will make the PPP technique more practical for real-

time applications. Deo and El-Mowafy (2016a) compared the performance of three PPP models 

that use triple frequency data. However, the testing was done for a GPS only case. PPP with 

multi-constellation GNSS has been widely studied for dual-frequency measurements. Multi-

constellation provides improved satellite geometry for better PPP performance in challenging 

environments like open-pit mines, urban canyons and forests. An early GPS-GLONASS 

combined PPP model was presented in Cai and Gao (2007), which showed improvements in 

accuracy and solution convergence time. A GPS-Galileo combined PPP model was attempted 

in Cao et al. (2010). Li et al. (2013) presented PPP results using GPS and Beidou integration, 

which had 12 satellites from the latter system at the time of writing. The results showed a slight 

improvement in convergence time, but only marginal improvement was noted in positioning 

accuracy. The traditional dual-frequency PPP model was adopted in all these studies, though 
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results were not conclusive due to the partial completion of the GLONASS, Galileo and Beidou 

constellations at the time of study..  

 

In this paper, the PPP model that uses triple frequency ionosphere-free low-noise linear 

combination presented in Deo and El-Mowafy (2016a) is extended to a multi-constellation 

applications using GPS, Galileo and Beidou observations. This linear combination was 

developed for triple frequency data by applying three conditions of noise minimisation, 

ionosphere-free and geometry preservation. Firstly, the models for the MFMC observation 

equations are given, followed by a discussion of the biases and recommended practices for 

treating them. The next section presents the functional model for the triple frequency PPP model 

when using the three constellations, followed by a description of the stochastic modelling of 

observations. Next, the analysis and testing of data at four Australian GNSS continuous 

operating stations is presented. Results comparing the convergence time, accuracy and 

precision for triple frequency PPP using GPS only, GPS+Galileo, GPS+Beidou and 

GPS+Galileo+Beidou are presented next, followed by conclusions.    

 

 

2. GNSS OBSERVATION MODEL 
 

The observation equation of the carrier phase and pseudorange code measurements for satellite 

𝑜 from one GNSS constellation such as GPS (denoted as 𝐺) on frequency 𝑖 in length units can 

be formulated as follows: 

 

𝑃𝑖
𝑜𝐺 = ρ𝑜𝐺 + 𝑐(𝑑𝑡G − 𝑑𝑡𝑜𝐺 + 𝑑𝑖𝐺

− 𝑑𝑖
𝑜𝐺) + 𝑇𝑜𝐺 + 𝜇𝑖𝐼

𝑜𝐺 + 𝜀P𝑖

𝑜𝐺 (1) 

𝜙𝑖
𝑜𝐺 = ρ𝑜𝐺 + 𝑐(𝑑𝑡G − 𝑑𝑡𝑜𝐺) + 𝑇𝑜𝐺 − 𝜇𝑖𝐼

𝑜𝐺 + 𝜆𝑖(𝑁𝑖
𝐺 + 𝛿𝑖𝐺

− 𝛿𝑖
𝑜𝐺)+𝜀ϕ𝑖

𝑜𝐺 (2) 

 

where 𝑃𝑖
𝑜𝐺 is the code and 𝜙𝑖

𝑜𝐺  is the phase measurement,  ρ𝑜𝐺 is the satellite-to-receiver 

geometric range, 𝑐 is the speed of light in vacuum; 𝑑𝑡G and 𝑑𝑡𝑜𝐺 are the receiver and satellite 

clock offsets; 𝑑𝑖G
 and 𝑑𝑖

𝑜𝐺 are the receiver and satellite code hardware biases in time units, 

respectively; 𝛿𝑖𝐺
 and 𝛿𝑖

𝑜𝐺  are the receiver and satellite phase biases in cycles, respectively; 𝑁𝑖
𝐺  

is the integer carrier phase ambiguity;  𝑇𝑜𝐺 is the tropospheric delay, 𝜇𝑖 =
𝑓1

2

𝑓𝑖
2 is the dispersive 

coefficient of the ionosphere, 𝐼𝑜𝐺 is the ionosphere error for the L1 reference frequency; 𝜀𝑃𝑖
𝑜𝐺 

and 𝜀ϕ𝑖

𝑜𝐺 comprises code and phase measurement combined noise and multipath, respectively.  

 

For the Beidou constellation (denoted as 𝐶) with frequency 𝑗 from satellite 𝑝, the equations for 

carrier phase  and pseudorange code measurement for frequency 𝑗  are (El-Mowafy et al., 2016): 

 

𝑃𝑗
𝑝𝐶 = ρ𝑝𝐶 + 𝑐 (𝑑𝑡𝐺 − 𝑑𝑡𝑝𝐶 + 𝑑𝑗𝐶

− 𝑑𝑗
𝑝𝐶) + 𝑇𝑝𝐶 + 𝜇𝑗𝐼

𝑝𝐶 + 𝐼𝑆𝑇𝐵𝐺−𝐶 + 𝜀𝑃𝑗

𝑝𝐶  (3) 

𝜙𝑗
𝑝𝐶 = ρ𝑝𝐶 + 𝑐(𝑑𝑡𝐺 − 𝑑𝑡𝑝𝐶) + 𝑇𝑝𝐶 − 𝜇𝑗𝐼

𝑝𝐶 + 𝐼𝑆𝑇𝐵𝐺−𝐶+𝜆𝑗 (𝑁𝑗
𝑝𝐶 + 𝛿𝑗

𝐺
− 𝛿𝑗

𝑝𝐶) + 𝜀𝜙𝑗

𝑝𝐶 (4) 

 

The terms are similar to the ones described for system 𝐺 above. 𝐼𝑆𝑇𝐵𝐺−𝐶 is the inter-system 

time bias between systems 𝐺 and 𝐶 (i.e. GPS and Beidou), combined for the receiver and the 

satellite. Similar equation is derived for the Galileo constellation (denoted as 𝐸). When 

integrating data from multiple constellations, users have to consider the differences in 

coordinate frames, particularly when using broadcast orbits. When using the precise orbits from 

International GNSS Service (IGS) or its subordinate Multi-GNSS Experiment (M-GEX), the 
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orbits for all constellations are consistent with International Terrestrial Reference Frame 

(ITRF). 

 

 

3. MODELLING OF BIASES 
 

This section describes the modelling of biases that occur in a single constellation as well as 

biases that occur when integrating multi-constellation GNSS data. 

 
3.1 Single Constellation Biases 

 
Satellite and receiver hardware biases 

Exists for both code and phase measurements and caused by several sources including digital 

delays in the signal generator, signal distortion, the processing filters, correlator differences 

handling signal modulation, firmware biases, bandwidth dissimilarities, in addition to the signal 

path through the antenna, splitter, cabling, and amplifier. Hardware biases tend to be stable and 

slowly changing with time. At the receiver end, it is the same for signals of the same frequency 

from the same constellation. Thus, the receiver hardware biases can be modelled out by the use 

of between satellite single differencing (BSSD) (El-Mowafy et al., 2016). At the satellite end, 

hardware biases are stable for hours and will be constant for a typical PPP session, however 

this may differ for each satellite. 

  
Differential Code Bias (DCB) 

The code hardware biases are different for each frequency. Hence when the ionosphere-free or 

other combination is formed between different frequencies, the impacts of these differences in 

hardware biases are transferred to the combination. For GPS, as an example, the precise orbit 

and clock products from IGS are formed from the dual-frequency ionosphere-free combination 

of L1/L2 and its DCB is included with transmitted clock corrections. Thus, DCBs won’t affect 

PPP code observations when using this combination, but it will be present if using individual 

signals, or other linear combinations and in phase observations because the same satellite clock 

offset is used for both code and phase observations. The DCBs of the base frequency that appear 

in the phase observations is usually lumped with the float carrier-phase ambiguity term. A full 

mathematical treatment of DCBs for such cases is discussed in El-Mowafy et al. 2016. The 

satellite DCB products from the IGS multi-GNSS Experiment (M-GEX) are now available for 

multi-frequency combinations of several constellations (Montenbruck et al., 2014). Since 

hardware biases are the same for signals from the same frequency and constellation, receiver 

DCBs are eliminated by forming BSSD. 

 

The mathematical models for the code measurements, considering DCBs produced from M-

GEX when applying IGS clock corrections, are written below for GPS and Galileo using 

RINEX version 3 notations.  

 

For GPS: 

𝐶𝐼𝐶𝑜𝐺 = 𝜌∗𝑜𝐺 − 𝑐 (𝐷𝐶𝐵𝐶1𝑊−𝐶1𝐶 +
𝑓2

2

𝑓1
2−𝑓2

2 𝐷𝐶𝐵𝐶1𝑊−𝐶2𝑊)    (5) 

𝐶𝐼𝑊𝑜𝐺 = 𝜌∗𝑜𝐺 − 𝑐 (
𝑓2

2

𝑓1
2−𝑓2

2 𝐷𝐶𝐵𝐶1𝑊−𝐶2𝑊)      (6) 

𝐶2𝑊𝑜𝐺 = 𝜌∗𝑜𝐺 − 𝑐 (
𝑓1

2

𝑓1
2−𝑓2

2 𝐷𝐶𝐵𝐶1𝑊−𝐶2𝑊)      (7) 

𝐶5𝑄𝑜𝐺 = 𝜌∗𝑜𝐺 − 𝑐 (𝐷𝐶𝐵𝐶1𝑊−𝐶5𝑄 +
𝑓2

2

𝑓1
2−𝑓2

2 𝐷𝐶𝐵𝐶1𝑊−𝐶2𝑊)    (8) 
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𝐶5𝑋𝑜𝐺 = 𝜌∗𝑜𝐺 − 𝑐 (𝐷𝐶𝐵𝐶1𝑊−𝐶5𝑋 +
𝑓2

2

𝑓1
2−𝑓2

2 𝐷𝐶𝐵𝐶1𝑊−𝐶2𝑊)    (9) 

 

with  𝜌∗𝑜𝐺 = 𝜌𝑜𝐺 + 𝑐(𝑑𝑡G − 𝑑𝑡𝑜𝐺
𝐼𝐺𝑆) + 𝑇𝑜𝐺 + 𝜇𝑖𝐼

𝑜𝐺 + 𝜀𝑃𝑖

𝑜𝐺 . The primary code measurements 

used to generate the broadcast clock corrections are C1W (P1) and C2W (P2). Note that the 

C2X and C2S code measurements may be converted to C2W as 𝐶2𝑊𝑟
𝑜𝐺 = 𝐶2𝑆𝑟

𝑜𝐺 +
(𝐷𝐶𝐵𝐶2𝑊−𝐶2𝑆), 𝐶2𝑊𝑟

𝑜𝐺 = 𝐶2𝑋𝑟
𝑜𝐺 + (𝐷𝐶𝐵𝐶2𝑊−𝐶2𝑥). 

 

For Galileo, the primary code measurements used to generate the broadcast clock corrections 

are C1X (E1 B+C) and C5X (E5a I+Q) (Uhlemann et al., 2015, Prange et al., 2015). Note that 

since the Galileo 𝐷𝐶𝐵𝐶1𝑋−𝐶1𝑋 is not currently available, C1C is assumed to be equivalent to 

C1X, thus 𝐷𝐶𝐵𝐶1𝑋−𝐶1𝑋 = 0. Similarly 𝐷𝐶𝐵𝐶5𝑋−𝐶5𝑄 and 𝐷𝐶𝐵𝐶1𝑋−𝐶7𝑄 are not available; thus it 

is assumed that C5X=C5Q and C7X=C7Q. The DCB corrections are applied as 

 

𝐶𝐼𝐶𝑞𝐸 = 𝜌∗𝑞𝐸 − 𝑐 (𝐷𝐶𝐵𝐶1𝑋−𝐶1𝐶 +
𝑓𝐸5𝑎

2

𝑓𝐸1
2 −𝑓𝐸5𝑎

2 𝐷𝐶𝐵𝐶1𝑋−𝐶5𝑋)    (10) 

𝐶𝐼𝑋𝑞𝐸 = 𝜌∗𝑞𝐸 − 𝑐 (
𝑓𝐸5𝑎

2

𝑓𝐸1
2 −𝑓𝐸5𝑎

2 𝐷𝐶𝐵𝐶1𝑋−𝐶5𝑋)      (11) 

𝐶5𝑋𝑞𝐸 = 𝜌∗𝑞𝐸 − 𝑐 (
𝑓𝐸1

2

𝑓𝐸1
2 −𝑓𝐸5𝑎

2 𝐷𝐶𝐵𝐶1𝑋−𝐶5𝑋)      (12) 

𝐶5𝑄𝑞𝐸 = 𝜌∗𝑞𝐸 − 𝑐 (𝐷𝐶𝐵𝐶5𝑋−𝐶5𝑄 +
𝑓𝐸1

2

𝑓𝐸1
2 −𝑓𝐸5𝑎

2 𝐷𝐶𝐵𝐶1𝑋−𝐶5𝑋)    (13) 

𝐶7𝑋𝑞𝐸 = 𝜌∗𝑞𝐸 − 𝑐 (𝐷𝐶𝐵𝐶1𝑋−𝐶7𝑋 +
𝑓𝐸5𝑎

2

𝑓𝐸1
2 −𝑓𝐸5𝑎

2 𝐷𝐶𝐵𝐶1𝑋−𝐶5𝑋)    (14) 

𝐶7𝑄𝑞𝐸 = 𝜌∗𝑞𝐸 − 𝑐 (𝐷𝐶𝐵𝐶1𝑋−𝐶7𝑄 +
𝑓𝐸5𝑎

2

𝑓𝐸1
2 −𝑓𝐸5𝑎

2 𝐷𝐶𝐵𝐶1𝑋−𝐶5𝑋)    (15) 

 

The impact of DCBs corrections on code point positioning in the aviation context is discussed 

in Deo and El-Mowafy (2016b). 

 
Initial Fractional Phase Bias (IFPB) and Differential Phase Biases (DPB)   

Initial fractional phase cycle bias exists in the satellite and receiver and is always less than 1 

phase cycle. It is separate from the hardware phase bias and constant for each session which is 

reset each time the receiver is switched off and on. IFPB is different for each frequency, but at 

the receiver end it is assumed the same for signals on the same frequency for satellites on the 

same constellation. Thus it is eliminated by forming BSSD measurements from the same 

frequency and constellation. 
 

Differential Phase bias (DPB) also exists when forming linear combinations, due to the phase 

hardware biases being different for each frequency. BSSD measurements from the same 

frequency and constellation will eliminate DPB at the receiver end. However, the satellite DPB 

remains in the PPP model. Satellite DPBs are stable like the IFPB, but they are difficult to 

separate from each other. Therefore they are usually combined in one term, i.e. the DPB. In 

PPP with float ambiguity estimation, these are usually lumped with the non-integer carrier 

phase ambiguity term. For PPP-AR, the estimation of DPB is the key to enable integer 

ambiguity resolution. 
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3.2 Multi-constellation Biases 

 
Inter-System Time Bias (ISTB) 

The ISTB is due to each constellation having the satellite clocks referenced to the constellation 

own timescale. The ISTBs are accounted for by either estimating a separate bias for each 

system, or by estimating the bias for one system and then estimating the differences from other 

systems with reference to this system. 

 
Inter System Biases (ISB) 

As discussed earlier, the signals from different frequencies and constellations will have 

different hardware biases for code and phase observations (Hergarty et al, 2004). When a 

common receiver clock offset is used, which include biases of a primary system, for all 

constellations, the differences between the receiver biases for different constellations form the 

ISB. Thus, additional parameters must be introduced in the PPP model to account for these 

differences are known as inter-system biases (ISB). 

 

 

4. TRIPLE FREQUENCY PPP MODEL 
In this section, the functional and stochastic models for a triple frequency multi-constellation 

PPP method are described. The constellations included in the modelling include GPS (𝐺), 

Beidou (𝐶) and Galileo (𝐸). It is assumed that the MFMC biases have been applied to the 

observations as discussed in El-Mowafy et al. (2016). 

 

 
4.1 Functional Model 

 

In the subsequent modelling, the ISTB is merged with the ISB term, the DPB and IFPB are 

merged with the float ambiguity term, whereas DCBs are applied to code measurements as 

described earlier using MGEX published DCB values. A low noise triple frequency ionosphere-

free combination developed in Deo and El-Mowafy (2016a) is used as the observations in the 

functional model. This linear combination has least noise propagation properties, is first order 

ionosphere-free; and preserves geometry. It is applied separately for the multi-constellation 

code and phase observations, which have the same coefficients for each measurement. Due to 

the minimisation of code noise propagation, the PPP solution can converge faster than when 

using standard dual-frequency ionosphere-free combination. The actual noise reduction was 

14%  for GPS, 3.1% for Galileo and 1.1% for Beidou; whereas the convergence time reduced 

by 11% for tests done for GPS only data (Deo and El-Mowafy, 2016a). The equations for 

functional models for GPS, Beidou and Galileo are: 

 

For GPS: 

𝑃𝑜𝐺 = 𝛼1,𝐺 ∙ 𝑃𝐿1
𝑞𝐺 + 𝛼2,𝐺 ∙ 𝑃𝐿2

𝑜𝐺 + 𝛼3,𝐺 ∙ 𝑃𝐿5
𝑜𝐺 = ρ𝑜𝐺 + 𝑐𝑑𝑡G + 𝑇𝑜𝐺 + 𝜀P

𝑜𝐺  (16) 

𝜙𝑜𝐺 = 𝛼1,𝐺 ∙ 𝜙𝐿1
𝑞𝐺 + 𝛼2,𝐺 ∙ 𝜙𝐿2

𝑜𝐺 + 𝛼3,𝐺 ∙ 𝜙𝐿5
𝑜𝐺 = ρ𝑜𝐺 + 𝑐𝑑𝑡G + 𝑇𝑜𝐺 + 𝜆𝑁∗𝑜𝐺+𝜀ϕ

𝑜𝐺 (17) 

 

with the coefficient values being 𝛼1,𝐺 = 2.326 944, 𝛼2,𝐺 = −0.359 646, and 𝛼3,𝐺 =

−0.967 299 
 

For Beidou: 

 

𝑃𝑝𝐶 = 𝛼1,𝐶 ∙ 𝑃𝐵1
𝑝𝐶 + 𝛼2,𝐶 ∙ 𝑃𝐵2

𝑝𝐶 + 𝛼3,𝐶 ∙ 𝑃𝐵3
𝑝𝐶 = ρ𝑝𝐶 + 𝑐𝑑𝑡𝐺 + 𝑇𝑝𝐶 + 𝐼𝑆𝐵𝐺−𝐶 + 𝜀𝑃𝑗

𝑝𝐶  (18) 
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𝜙𝑝𝐶 = 𝛼1,𝐶 ∙ 𝜙𝐵1
𝑝𝐶 + 𝛼2,𝐶 ∙ 𝜙𝐵2

𝑝𝐶 + 𝛼3,𝐶 ∙ 𝜙𝐵3
𝑝𝐶 = ρ𝑝𝐶 + 𝑐𝑑𝑡𝐺 + 𝑇𝑝𝐶 + 𝐼𝑆𝐵𝐺−𝐶 + 𝜆𝑁∗𝑝𝐶 + 𝜀𝜙

𝑝𝐶

            (19) 

 

with the coefficient values being 𝛼1,𝐶 = 2.566 439, 𝛼2,𝐶 = −1.228 930, and 𝛼3,𝐶 =

−0.337 510 
 

For Galileo: 

 

𝑃𝑞𝐸 = 𝛼1,𝐸 ∙ 𝑃𝐸1
𝑞𝐸 + 𝛼2,𝐸 ∙ 𝑃𝐸5𝑎

𝑞𝐸 + 𝛼3,𝐸 ∙ 𝑃𝐸5𝑏
𝑞𝐸 = ρ𝑞𝐸 + 𝑐𝑑𝑡𝐺 + 𝑇𝑞𝐸 + 𝐼𝑆𝐵𝐺−𝐸 + 𝜀𝑃

q𝐸  (20) 

𝜙𝑞𝐸 = 𝛼1,𝐸 ∙ 𝜙𝐸1
𝑞𝐸 + 𝛼2,𝐸 ∙ 𝜙𝐸5𝑎

𝑞𝐸 + 𝛼3,𝐸 ∙ 𝜙𝐸5𝑏
𝑞𝐸 = ρ𝑞𝐸 + 𝑐𝑑𝑡𝐺 + 𝑇𝑞𝐸 + 𝐼𝑆𝐵𝐺−𝐶 + 𝜆𝑁∗𝑞𝐸 + 𝜀𝜙

𝑞𝐸

            (21) 

 

with coefficient values being 𝛼1,𝐸 = 2.314 925, 𝛼2,𝐸 = −0.836 269, and 𝛼3,𝐸 = −0.478 656.  

 

If we consider the case of a GNSS receiver tracking 1…𝑛 GPS satellites, 1…𝑚 Beidou 

satellites, and 1…𝑘 Galileo satellites at an instant of time. The unknown parameters are  

 

𝒙 = [𝑥 𝑦 𝑧 𝑐𝑑𝑡𝐺 𝑍𝑊𝐷 𝐼𝑆𝐵𝐺−𝐶 𝐼𝑆𝐵𝐺−𝐸 𝜆𝑁∗(𝐺1, … , 𝐺𝑛, 𝐶1, … , 𝐶𝑚, 𝐸1, … , 𝐸𝑘)] (22) 

 

Where 𝑥, 𝑦, 𝑧 denotes the unknown receiver position; ZWD is the zenith wet delay after 

modelling the hydrostatic tropospheric delay using the Saastamoinen model and expressing the 

wet delay as a function of a wet mapping function (Tuka and El-Mowafy, 2011). The ambiguity 

terms for each satellite are float values due to the presence of DPB of the considered signals 

and DCBs of the base frequencies. The functional model in Eqs. 16-21 is non-linear, and thus 

the system is linearised around approximate values of the unknown parameters, 𝒙𝟎. Small 

corrections, ∆𝒙, are calculated using Kalman filter, which is applied to the approximations to 

get the parameter estimates as 𝒙 = 𝒙𝟎 + ∆𝒙. The design matrix, 𝐴,  for this system is: 
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𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑋𝐺1−𝑥0

𝜌0

𝑌𝐺1−𝑦0

𝜌0

𝑍𝐺1−𝑧0

𝜌0
1 𝑚𝑤 0 0 0 0 0 0 0 0 0

𝑋𝐺1−𝑥0

𝜌0

𝑌𝐺1−𝑦0

𝜌0

𝑍𝐺1−𝑧0

𝜌0
1 𝑚𝑤 0 0 1 0 0 0 0 0 0

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .
𝑋𝐺𝑛−𝑥0

𝜌0

𝑌𝐺𝑛−𝑦0

𝜌0

𝑍𝐺𝑛−𝑧0

𝜌0
1 𝑚𝑤 0 0 0 0 0 0 0 0 0

𝑋𝐺𝑛−𝑥0

𝜌0

𝑌𝐺𝑛−𝑦0

𝜌0

𝑍𝐺𝑛−𝑧0

𝜌0
1 𝑚𝑤 0 0 0 0 1 0 0 0 0

𝑋𝐶1−𝑥0

𝜌0

𝑌𝐶1−𝑦0

𝜌0

𝑍𝐶1−𝑧0

𝜌0
1 𝑚𝑤 1 0 0 0 0 0 0 0 0

𝑋𝐶1−𝑥0

𝜌0

𝑌𝐶1−𝑦0

𝜌0

𝑍𝐶1−𝑧0

𝜌0
1 𝑚𝑤 1 0 0 0 0 1 0 0 0

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .
𝑋𝐶𝑚−𝑥0

𝜌0

𝑌𝐶𝑚−𝑦0

𝜌0

𝑍𝐶𝑚−𝑧0

𝜌0
1 𝑚𝑤 1 0 0 0 0 0 0 0 0

𝑋𝐶𝑚−𝑥0

𝜌0

𝑌𝐶𝑚−𝑦0

𝜌0

𝑍𝐶𝑚−𝑧0

𝜌0
1 𝑚𝑤 1 0 0 0 0 0 1 0 0

𝑋𝐸1−𝑥0

𝜌0

𝑌𝐸1−𝑦0

𝜌0

𝑍𝐸1−𝑧0

𝜌0
1 𝑚𝑤 0 1 0 0 0 0 0 0 0

𝑋𝐸1−𝑥0

𝜌0

𝑌𝐸1−𝑦0

𝜌0

𝑍𝐸1−𝑧0

𝜌0
1 𝑚𝑤 0 1 0 0 0 0 0 1 0

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .
𝑋𝐸𝑘−𝑥0

𝜌0

𝑌𝐸𝑘−𝑦0

𝜌0

𝑍𝐸𝑘−𝑧0

𝜌0
1 𝑚𝑤 0 1 0 0 0 0 0 0 0

𝑋𝐸𝑘−𝑥0

𝜌0

𝑌𝐸𝑘−𝑦0

𝜌0

𝑍𝐸𝑘−𝑧0

𝜌0
1 𝑚𝑤 0 1 0 0 0 0 0 0 1]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (23) 

 

where 𝑚𝑤 is the wet mapping function. The parameter matrix and the design matrix must be 

dynamically updated when new satellites appear, or when a satellite disappears from view. The 

initial values of the float ambiguities must be recalculated for a new satellite, when a satellite 

reappears after loss of tracking, or when a cycle slips is detected that cannot be repaired.  

 
4.2 Stochastic Model of Observations 

 

For stochastic modelling of GPS observations, which is equally applicable for Beidou and 

Galileo, the raw measurements are assumed to be uncorrelated with code noise 𝜎𝑃1
𝐺, 𝜎𝑃2

𝐺 and 

𝜎𝑃5
𝐺, and carrier phase noise 𝜎𝜙1

𝐺, 𝜎𝜙2
𝐺 and 𝜎𝜙5

𝐺.  Thus, the noise in the triple frequency code 

and phase linear combinations is determined with error propagation law as: 

 

𝜎
𝑃𝐺
2 = (𝛼1,𝐺 ∙ 𝜎𝑃1

𝐺)
2

+ (𝛼2,𝐺 ∙ 𝜎𝑃2
𝐺)

2

+ (𝛼3,𝐺 ∙ 𝜎𝑃5
𝐺)

2

     (24) 

𝜎
𝜙𝐺
2 = (𝛼1,𝐺 ∙ 𝜎𝜙1

𝐺)
2

+ (𝛼2,𝐺 ∙ 𝜎𝜙2
𝐺)

2

+ (𝛼3,𝐺 ∙ 𝜎𝜙5
𝐺)

2

     (25) 

 

The measurement weighting is based on elevation angle (E) of the satellites as 1/sin (𝐸). Since 

the code and phase observations on different frequencies are assumed uncorrelated, the 

measurement covariance matrix is diagonal, where the linear combinations used in the model 

are also uncorrelated.  
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5. VALIDATION OF MULTI-CONSTELLATION PPP MODEL 
 
5.1 Test Description 

 

Test data was simulated for one day at four sites at Hobart (HOB2), Alice Springs (ALIC), 

Yarragadee (YAR2) and Townsville (TOW2), which are distributed over the Australian 

continent. Simulated data was used due to issues in actual data such as the line bias variations 

in GPS Block IIF satellites (Montenbruck et al., 2012), insufficient number of GPS Block IIF 

satellites, and the unavailability of satellite antenna phase centre offsets for individual signals. 

The GPS satellite antenna offsets are available for the L1-L2 ionosphere-free combination only, 

whereas the offsets for Galileo and Beidou are based on satellite design diagrams rather than 

actual calibrations. Dilssner et al. (2014) calibrated these offsets for Beidou satellites and 

reported that these were vastly different from the IGS M-GEX recommended values, by as 

much as 3.9m (for IGSO. Hence simulated data is used to isolate these issues and focus on the 

performance of the PPP model. The epoch interval rate was 30 s, with measurement standard 

deviations of 0.01 cycles for carrier phase on all frequencies, and for code measurements: 

0.37m, 0.48m and 0.36m for GPS P1, P2 & P5; 0.36m, 0.35m and 0.34m for Galileo E1, E5a 

& E5b codes and 0.51m, 0.37m and 0.34m for Beidou B1, B2 & B3. These values are based on 

a method for determining the standard deviations presented in El-Mowafy (2014 and 2015) 

using a single-receiver single-channel method.  A satellite elevation cut-off of 10 degrees was 

used. 

 
5.2 Analysis and Discussion of Results 

 

The triple frequency MFMC PPP model was implemented applying Kalman filter processing 

using by an in-house software. The software is suitable for processing kinematic data was 

configured for static data. The performance of the MFMC PPP model was assessed based on 

comparing the convergence time and positional accuracy to the standard dual-frequency 

solutions, after a 3 dimensional (3D) precision of 5cm was reached and maintained. Accuracy 

is defined as the root mean squared errors (RMSE) in East, North and up directions with respect 

to the known station position, after convergence is achieved.  

 

 The mean RMSE and convergence times for the four sites when processing hourly 

blocks of data are given in Table 1. The algorithms compared are the standard dual-

frequency GPS only solution (L1-L2 G) and the triple frequency solutions for GPS only, 

GPS+Beidou (G+C) and GPS+Beidou+Galileo (G+C+E). Overall, when comparing the 

triple frequency solutions to the conventional dual-frequency solution, the triple 

frequency solution for G+C+E gave the best performance with a notable improvement 

7.6 minutes in convergence time and improvements of 2mm in RMSE East. More 

specifically at the four sites. For ALIC, the triple frequency solution for G+C gave the 

best performance with an improvement of 5mm in RMSE East and 5.7 minutes in 

convergence time. 

 For HOB2, triple frequency solution for G+C+E gave the best performance with 

improvement of 4mm in RMSE up and 7.4 minutes in convergence time. 

 For TOW2, triple frequency solution for G+C+E gave the best performance with 

improvement of 4mm in RMSE up and 7.7 minutes in convergence time. 

 For YAR2, triple frequency solution for G+C+E gave the best performance with a 

notable improvement 11.5 minutes in convergence time. There was no noticeable 

improvement in accuracy, whereas the triple frequency solution for G had a slightly 

higher convergence time than the dual-frequency results. 
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Figure 1 shows, as an example, the PPP 3D positioning hourly solution errors at YAR2 for three 

triple frequency solutions using GPS only, GPS+Beidou and GPS+Beidou+Galileo as well as 

the conventional dual-frequency observations using GPS only observations. The improved 

performance of the MFMC PPP models, compared to the dual-frequency model is clearly 

visible with reduced convergence time and RMSE values.     

 

Site Solution  Mean 

RMSE 

East (m) 

 Mean 

RMSE 

North (m) 

 Mean 

RMSE 

Up (m) 

 Mean 

Convergence 

time (min) 

ALIC 

 

L1-L2 G 0.017 0.006 0.015 26.9 

Triple freq. G 0.018 0.006 0.014 24.9 

Triple freq.  G+C 0.012 0.007 0.016 21.2 

Triple freq.  G+C+E 0.012 0.007 0.018 22.1 

HOB2 

 

L1-L2 G 0.015 0.006 0.021 31.9 

Triple freq.  G 0.012 0.007 0.017 25.8 

Triple freq.  G+C 0.012 0.008 0.018 26.8 

Triple freq.  G+C+E 0.014 0.007 0.017 24.5 

TOW2 

 

L1-L2 G 0.014 0.004 0.019 30.9 

Triple freq.  G 0.012 0.005 0.015 26.3 

Triple freq.  G+C 0.012 0.006 0.017 24.4 

Triple freq.  G+C+E 0.014 0.007 0.015 23.2 

YAR2 

 

L1-L2 G 0.017 0.007 0.015 28.6 

Triple freq.  G 0.016 0.006 0.019 30.0 

Triple freq.  G+C 0.013 0.006 0.015 18.2 

Triple freq.  G+C+E 0.017 0.005 0.015 17.1 

Overall 

 

L1-L2 G 0.016 0.006 0.018 29.6 

Triple freq.  G 0.014 0.006 0.016 26.5 

Triple freq.  G+C 0.012 0.007 0.016 23.0 

Triple freq.  G+C+E 0.014 0.007 0.016 22.0 

Table 1. Table of results showing mean RMSE and convergence times with hourly blocks of data for 

the conventional dual-frequency GPS only solution (L1-L2 G) and the triple frequency solutions for 

GPS only, GPS+Beidou (G+C) and GPS+Beidou+Galileo (G+C+E). 
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Figure 1.  PPP 3-dimensional positioning errors for the hourly solutions at YAR2 for the standard 

dual-frequency GPS only solution (top-left) and the triple frequency solutions for GPS only (top-

right), GPS+Beidou (bottom-left) and GPS+Beidou+Galileo (bottom-right). 

 

6. CONCLUSIONS 
 

An overview of the various biases that need to be considered when integrating MFMC data was 

given. A low-noise, ionosphere-free triple frequency PPP model proposed in Deo and El-

Mowafy (2016a) was tested with hourly blocks of multi-constellation data from GPS, Beidou 

and Galileo at four sites covering the Australian continent. Improvements in both positioning 

accuracy by up to 5mm RMSE and convergence times by up to 11.5 minutes were noted at all 

four sites, when using the triple-frequency data compared to GPS-only dual-frequency PPP. 

Overall, the triple frequency solution for GPS+Beidou+Galileo gave the best performance with 

a notable overall improvement of 7.6 minutes in convergence time and improvements of 2mm 

in RMSE East and Up. This is a promising step for real-time PPP users who can potentially 

benefit from MFMC PPP. 
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